MONITOIR

—C HRIN—

MonitorChain integration instruction

MonitorChain is a decentralized oracle on Ethereum blockchain whose purpose is to serve current token
state. The Ethereum ecosystem currently has more than 550 tokens that are listed on Etherscan and are
traded on various exchanges. There are many more tokens that aren’t listed on major exchanges but might

become traded in the future.

https://MonitorChain.com

Table of Contents

MonitorChain integration iNSErUCLION ... 1
MonitorChain Ul and fEAtUIES ... 3
Programmatically Accessing MonitorChain ... 5

AcCCeSSINEErface CONTIACE ..o 7
Smart Contract Integration with MonitorChain Smart Contract ..o, 9
NodeJS script integration with MonitorChain..................c.cocooiiii e, 14
Invoking token status CRANGES................cooo i e 18
Resetting sandboX MonitorChain ... e 21
AddItioNAl FESOUICES ..ottt 21

https://MonitorChain.com

MonitorChain Ul and features

From the MonitorChain perspective, tokens (and their respective token contracts) can be in various states
which are currently divided into the following four categories:

0. Good
1. Notice
2. Warning
3. Severe

4. Emergency
The states depend on the detected potential and actual fraudulent behavior within transactions related to
the token contract. In order to detect such behavior MonitorChain relies on two components, monitor and
tracer. Monitor updates the MoniotorChain smart contract with appropriate error for the token on which
such malicious transaction has been detected. Tracker is tracing the “transaction tree” that starts from the
malicious transaction destination address and blocks them on the MonitorChain smart contract.

@ @ https//sandboxi.monitorchain.com e @ || Q Search LN @O E
[

MONITOIR
. Account 2

"

—CHAIN—/

Subscriptions
376205
Specific Tokens Monitor Exchange Enterprise

Price: 0.50000000000000006 ETH/token/30 days rice: SETH/30 days September 13 2018

Choosen number of Tokens Monitored All ERC Tokens Monitored
Instant Notification of Alerts Instant Notification of Alerts @ o7 02:08
Priority support
Be: sand inve; Bestfor DEXs and Small Exchanges
tokens
September 13 2018
® Subscribe ® Subscribe 02:08
September 13 2018
96 01:39

Figure 1 - MonitorChain homepage for unsubscribed user

MonitorChain displays such token statuses on the main dApp Ul for subscribers. Depending on the
subscription, users can access states of separate tokens or all listed tokens. Subscription is paid in Ethers
allows reading the current status of the token but also the token status history. In order to pay for the
subscription user navigates with its metamask wallet to the homepage of the MonitorChain (for example:
sandbox1.monitorchain.com) (Figure 1) and is presented with the page where she can choose her
subscription. Also, user can navigate to sandbox1.monitorchain.com/subscriptions (Figure 1) to check her
current subscription, extend it or change it. Once subscribed, user can access the token feed as per
subscription.

https://MonitorChain.com

onitarchain.com/subscriptions

MONITOIR

—CHRAIN—

Select your subscription length and token(s) below, then click 'Subscribe’ to complete your purchase

Access Address 0x05021926E1DaD821e6d?6f36CAB57412F0BSERSS

Estimated Subscription Price: 1.00000000000000002 ETH
Estimated Subscription Daily Price: 0.033333333333333334 ETH
Estimated Remaining Overhead Balance: 0ETH

MNumber of subscription days: 30

o @ ﬁ O\ Search

® Subscribe

Q
Logo Name Symbol Address
@ BFW BFW 0xD94cF3A3dF?AaAD4cDECa18375d05585BCd7DD4? a
@ MKS MKS Oxc6CFaAEA3183446e0E597168cD2dc2926d78A5a35 a
@ PKS PKS OxA7EF1490B2DcD25EA783f2Cd6A6Da36fb621dAbG a
@ RST RST 0x3B9eB2Ed1f0368f48C4Ba%4959D041840De4A78A

Figure 2 - Subscription page

1.monitorchain.com

MONITOIR

—CHRAIN—
Q
Logo Name Symbol Address
@ BFW BFW OxD94cF3A3dF9AaA04cDECa18375d05585BCd7DD4% B
@ MKS MKS Oxc6CFaAEA3183446e0E597168cD2dc296d78A5a35 E

Status:m Message:

Total Supply Subscribed
10000000 [¢
10000000 [¢
10000000

10000000

If user has successfully subscribed to tokens, she can see their statuses in the feed on the MonitorChain
homepage (Figure 3), but only for those for which the subscription has been paid. From the same page,
user can check the details of the current status and navigate to the token status history page.

v @ | | Q search

Subscription

Total Supply Status
10000000 (]
10000000 (v]

Seton: m

Figure 3 - Homepage token feed

https://MonitorChain.com

Programmatically Accessing MonitorChain

Besides accessing MonitorChain directly through the token feed of the dApp itself, more common scenario
is accessing the MonitorChain programmatically. This feature is important to allow other dApps
(exchanges, wallets, token contracts etc.) to be able to read the current token status from the MonitorChain
contract and act accordingly. To allow programmatic access to the MonitorChain tokens statuses. user can
access MonitorChain subscription page and pay subscription from her own wallet on behalf of another
address, called access address. Access address can be an address of another smart contract or a wallet
that is used to programmatically access the MonitorChain (Figure 4).

onitorchain.com/subscriptions

MONITOIR
—CHAIN—

Select your subscription length and token(s) below, then click 'Subscribe' to complete your purchase

- T} Q Search

Access Address Oxd6A21b76fB93B42923AaC1853641C8710E3Bd992

Subscription Status: Subscribed

Subscription Start: 2018/09/13 23:43:58

Remaining Days: 30

Daily Subscription Price: 0.033333333333333334
Remaining Subscription Balance: 1.0000000000000001
Remaining Overhead Balance: 0

Estimated Subscription Price: 0OETH

Estimated Subscription Daily Price: 0.033333333333333334 ETH
Estimated Remaining Overhead Balance: 0 ETH

Number of subscription days: 30

Q
Name Symbol Address
BFW BFW 0xD94cF3A3dF9AaA04cDECa18375d05585BCd7DD4Y E
MKS MKS Oxc6CFaAEA3183446e0E597168cD2dc296d78A5a35 E

Total Supply Subscribed
10000000 [¢
10000000 [¢

Figure 4 - Setting Access Address for subscription

https://MonitorChain.com

There are two main approaches for programmatic integration with MonitorChain:

1. Integrating dApp’s smart contract with MonitorChain smart contract directly

2. Integrating NodeJS script which is using web3 or similar library to access MonitorChain
Integration of a smart contract directly with MonitorChain smart contract is more suitable for on-chain
Dexes that would like to freeze trading in cases when a particular token has error or to block trading for a
blocked address.

Integration of a NodeJS script is useful in cases when off chain exchange wants to block trading on a token
that has error. Since MonitorChain issues events in cases when token statuses change, NodeJS script tied
to a wallet that has access address subscribed to a token which changed, can read its new status and
forward such data. For example, such script could block centralized exchange, send email to the trader,
send other means of notifications to various interested parties etc. Such script could also affect some other
smart contract indirectly submitting a transaction to it in relation to changed token status.

In order to enable developers to test various approaches of integration, MonitorChain provides integration
sandboxes. Integration sandboxes contain the following elements that provide developers with the tools
for seamless integration:

1. Deployed MonitorChain Ul on our servers with URL: sandboxX.monitorchain.com where X is
replaced with a number (1,2, etc).

2. MonitorChain smart contract on Rinkeby Ethereum test network with appropriate address
of the deployed contract.

3. Four test tokens which are set to be monitored on MonitorChain and which are vulnerable
to various malicious transactions. Sandbox version of the MonitorChain contains special
page that helps with breaking such tokens.

4. Github repo which contains MonitorChain Accessinterface for NodeJS programmatic access
with examples and documentation (https://github.com/ZenchainSoftware/monitorchain-
interface-library)

5. Github repo which contains breakable token contract code, smart contract integration
pattern examples and MonitorChain reset script
(https://github.com/ZenchainSoftware/monitorchain-developer-sandbox-tools)

6. Npm monitorchain-interface-library https://www.npmjs.com/package/monitorchain-
interface-library

7. Document with actual sandbox MonitorChain URL, MonitorChain Rinkeby smart contract
address, seed phase (mnemonics) of the MonitorChain admin account and account address
prefilled with some Rinkeby Ethereum.

https://MonitorChain.com

https://github.com/ZenchainSoftware/monitorchain-interface-library
https://github.com/ZenchainSoftware/monitorchain-interface-library
https://github.com/ZenchainSoftware/monitorchain-developer-sandbox-tools
https://www.npmjs.com/package/monitorchain-interface-library
https://www.npmjs.com/package/monitorchain-interface-library

AccessiInterface contract

For proper integration with MonitorChain, both from smart contract and from NodeJS application, proper
contract code that exposes MonitorChain public methods is needed. Such contract is implemented in the
Accessinterface contract. The contract can be obtained from two endpoints

https://github.com/ZenchainSoftware/monitorchain-interface-library or
https://www.npmjs.com/package/monitorchain-interface-library.

The code snippet (Snippet 1) gives all the MonitorChain public functions exposed in the AccessLibrary with
detail comments

Accesslnterface {

minDays() returns(uint8 minDays);

pricePerTokenPerDay() returns(uint8 pricePerTokenPerDay);

priceForAllPerDay() returns(uint8 priceForAllPerDay);

getTokenForEventld(uint16 eventld) returns (address tokenAddress);

getTotalStatusCounts(address tokenAddress) returns (uint16 errorsCount);

getStatusLevel(address tokenAddress) returns (uint8 errorLevel);

getCurrentStatusDetails(address tokenAddress) returns (

uints,

string,

address,

uint);

getStatusDetails(address tokenAddress, uint16 statusNumber) returns (
uints,
string,
address,
uint,

bool);

https://MonitorChain.com

https://github.com/ZenchainSoftware/monitorchain-interface-library
https://www.npmjs.com/package/monitorchain-interface-library

function getLastStatusDetails(address tokenAddress) view public returns (
uints,

string,

address,

uint,

bool);

function subscriptionlsValid() public view returns(bool isValid);

function subscriptionlsValidForAccessAddress() view public returns(bool isValid);

function isExistingSubscriber() public view returns (bool isSubscriber);

function isSubscribedToToken(address token) public view returns (bool isSubscribed);

function canAccessToken(address token) public view returns (bool canAccess);

function getNumberSupportedTokens() public view returns (uint numberOfTokens);

function getAllSupportedTokens() public view returns (address[] allTokens);

function remainingSubscriptionDays() public view returns (uint remainingDays);

function unsubscribe() public;

function calculatePrice(uint numberOfDays, uint numberTokens) view public returns (

uint,

uint,

uint);

function subscribe(address subscribee, uint numberOfDays, address[] tokenAddresses) public payable;

function subscribeAll(address subscribee, uint numberOfDays) public payable;

function getSubscriptionData() public view returns (
uint,
uint,
uint,

uint,

https://MonitorChain.com

address);

isAddressBlocked(address token, address addressToCheck) returns(bool);

TokenStatusChanged(uint16 eventld);

Snippet 1 - Accessinterface function with detailed comments

Smart Contract Integration with MonitorChain Smart Contract

In order to support integration of a smart contract with MonitorChain smart contract, the address of a
contract that is accessing MonitorChain has to be subscribed as access address. Accessing smart contract
should be able to set MonitorChain contract address to its property in order to be able to invoke
MonotorChain smart contract. In general, two main approaches for such integration exist, depending on
the use case:

1. Smart Contract is directly accessing MonitorChain smart contract.

2. Proxy contract is accessing MonitorChain directly and at the same it is exposing functions

that allows Accessing Smart Contact to react on token statuses.

https://MonitorChain.com

Direct (Embedded) access to MonitorChain

Document SimpleTransfer.sol (found in /monitorchain-developer-sandbox-
tools/ethereum/contracts/SimpleTransfer.sol) contains example of such integration. Accessing Smart
Contract has to keep the address of the MonitorChain. Before checking the status of a specific token,
accessing Smart Contract has to check if its subscription is still valid and if it is subscribed to a particular
token. If it is, it can get the current token status, get the current token error or any status from the token
history by calling appropriate functions of the MonitorChain Smart Contract that are exposed through the
Accessinterface library.

SimpleTransfer {
address owner;
address monitorChain;

SimpleTransfer()

owner = .sender;

restriccToOwner()¥{

require(.sender == owner);

—r

setMonitorChainAddress(address mcnAddress) restriccToOwner {

monitorChain = mcnAddress;

transferFromToBlocking(address token, address from, address to, uint amount)

require(ERC20Interface(token).allowance(from, address(this))>=amount);

if(monitorChain!=address(0) && Accesslnterface(monitorChain).subscriptionlsValidForAccessAddress()

&& Accessinterface(monitorChain).canAccessToken(token))
require(Accessinterface(monitorChain).getStatusLevel(token) == 0);

ERC20Interface(token).transferFrom(from,to,amount);

}
Snippet 5 - Embedded MonitorChain integration based on token status

In the shown example (Snippet 2), if MonitorChain smart contract address is properly set, address of the
contract is properly subscribed and can access the token in question, it can query MonitorChain for its
status. The code can react depending on the retrieved status. In the current example, require command i
used to block and revert the whole transaction effectively blocking the transfer on a particular toke

https://MonitorChain.com

Similarly, depending on the need, executing function can be blocked only for the addresses that are
blocked on the MonitorChain (Snippet 3) and not all the transactions on the token. The following example,
after checking if the subscription is valid and if the contract address (access address) is subscribed for the
token, checks then if the transfer source address is blocked on MonitorChain.

transferFromToAddressBlocking(address token, address from, address to, uint amount)
require(ERC20Interface(token).allowance(from, address(this))>=amount);
if(monitorChain!=address(0)
&& AccessInterface(monitorChain).subscriptionlsValidForAccessAddress()

&& Accessinterface(monitorChain).canAccessToken(token))

require(!AccessInterface(monitorChain).isAddressBlocked(token, from));

ERC20Interface(token).transferFrom(from,to,amount);

Snippet 3 - Embedded MonitorChain integration based on blocked addresses for specific token

https://MonitorChain.com

Intergration with MonitorChain through Proxy contract

Once dApp smart contract has been deployed to the Ethreum blockchain, it is impossible to change and
therefore, each change requires new deployment and costly migration script. Therefore, it might be better
option to integrate with MonitorChain through Proxy contract. Such proxy contract is an interface that
exposes desired functions for the dApp smart contract. Actual Proxy interface implementation will use

integration with MonitorChain to implement properly exposed functions. The example of a MonitorChain
integration through the Proxy is given in the SimpleTransferWithProxy.sol document (found in
/monitorchain-developer-sandbox-tools/ethereum/contracts/SimpleTransferWithProxy.sol).

In the example given in the following code snipped (Snippet 4), the Proxy contract exposes one function
called freeze. The actual implementation of the interface is MonitorChainProxy smart contract. Itimplements
the freeze function by checking the token status on the MonitorChain Smart Contract. The access address
for accessing MonitorChain in this case must be the address of the MonitorChainProxy depoyed smart
contract. Depending of the result to the MonitorChain getStatusLevel function, freeze function returns if
transactions on the contract should be frozen or not.

Proxy{

freeze(address token) returns(bool);

MonitorChainProxy is Proxy{

address user;

address owner;

address monitorChain;
MonitorChainProxy(address userAddress) {
owner = .sender;

user = userAddress;

setMonitorChainAddress(address mcnAddress) restriccToOwner {

require(mcnAddress!=address(0));

monitorChain = mcnAddress;

freeze(address token) restrictToUser returns(bool){
if(monitorChain!=address(0)
&& AccessInterface(monitorChain).subscriptionlsValidForAccessAddress()
&& AccessInterface(monitorChain).canAccessToken(token))
return AccessInterface(monitorChain).getStatusLevel(token) > 0O;

return

Snippet 4 - Proxy for MonitorChain Smart Contract integration

https://MonitorChain.com

After the Proxy and its exposed methods have been implemented, it should be properly connected with
the dApp smart contract. Snippet 5 gives example how such Proxy contract can be used with dApp contract.

SimpleTransferWithProxy {
address owner;
address freezeProxy;
SimpleTransferWithProxy()

owner = .sender;

restrictToOwner(X{

require(.sender == owner);

—r

setFreezeProxy(address proxy) restrictToOwner {

freezeProxy = proxy;

transferFromTo(address token, address from, address to, uint amount)
require(ERC20Interface(token).allowance(from, address(this))>=amount);
if(freezeProxy!=address(0))

require(!Proxy(freezeProxy).freeze(token));

ERC20Interface(token).transferFrom(from,to,amount);

Snippet 5 - dApp Smart Contract using the Proxy exposed method

The Smart Contract must provide functions to set the Proxy contract address. Then, to check if the
transaction should be executed, it calls Proxy contract exposed methods (freeze in this example) to check if
a transaction on a token should be frozen. The freeze method itself, within the Proxy contract
implementation calls MonitorChain Smart Contract to check the token status.

https://MonitorChain.com

Node]JS script integration with MonitorChain

In order to enable off chain applications to react to token status changes (centralized exchanges, token
tracking websites, news feeds), as well as to update other smart contracts states from off chain sources,
integration with MonitorChain from off chain code has to be provided. One approach would be the use
of the

Accessinterface.sol contract and proper wallet implementations and providers that can call the contract
directly. Such approach is straightforward and is used in most cases when custom integration library
does not exist. This instruction will not discuss such integration approach in particular. Using the proper
compiled Accessinterface contract, wallet and web3 MonitorChain integration can be achieved.

In order to properly facilitate off chain MonitorChain, a custom NodeJS library that facilitates such
integration is provided. The library can be retrieved from the github repo
https://github.com/ZenchainSoftware/monitorchain-interface-library or from the
https://www.npmjs.com/package/monitorchain-interface-library

The monitorchain-interface-library module can be easily installed using npm command:
$ npm install monitorchain-interface-library

Once installed, it easy to access MonitorChain using the Accessinterface wrapper. As given in the Snippet
6, the Accessinterface constructor accepts provider endpoint (for example

http://rinkeby.infura.io/<AP| _KEY>), MonitorChain contract address and the mnemonic (seed) of the
account that will be used to access the MonitorChain. Once the object has been created, it can call the
functions of the Accessinterface in various ways, by resolving a promise, using a callback or just applying
the async-await syntax.

{AccesslInterface} = require('monitorchain-interface-library');

log = console.log;
mc = Accesslnterface(
'http://rinkeby.infura.io/<API KEY>',

'0XF8CE9D?2....71337Bd6201a",

'12 words mnemonic is here'

mc.getAllSupportedTokens().then(console.log);

mc.getNumberSupportedTokens((err, result) => {console.log(err, result)})

https://MonitorChain.com

https://github.com/ZenchainSoftware/monitorchain-interface-library
https://www.npmjs.com/package/monitorchain-interface-library
http://rinkeby.infura.io/%3cAPI_KEY

calc =

price = await mc.calculatePrice(45, 50);
console.log(price);

1

calc();
Snippet 6 - Examples of invoking Accessinterface javascript wrapper object functions

Similar example could be used for subscribing to the MonitorChain. The Accessinterface is using the built
in truffle-hd-wallet which provides possibility to change the wallet index and therefore change the
current address for the same set of mnemonics as provided on the Snippet 7.

{AccesslInterface} = require('monitorchain-interface-library');

log = console.log;

mc = Accesslnterface(
'http://localhost:8545',
'0xF8CE9D?2...337Bd6201a’,

12 words mnemonic is here'

subscribe =

mc.wallet = 2;

log(await mc.getSubscriptionData());

log(await mc.getTokensSubscribedTo());

await mc.subscribe([
"0xB8c77482e45F1F44dE1745F52C74426C631bDD52"

log(await mc.getSubscriptionData());

log(await mc.remainingSubscriptionDays());

log(await mc.getTokensSubscribedTo());

subscribe(),
Snippet 7 - Subscribing the current wallet address to MonitorChain using Accessinterface library

https://MonitorChain.com

Instead of initializing the Accessinterface by just passing arguments to its constructor, Accessinterface can
be initialized with custom web3 object. In the following Snippet 8, the Accessinterface object is initialized
with an existing web3 object and then used to query supported tokens on the MonitorChain.

{AccesslInterface} = require('monitorchain-interface-library");
HDWalletProvider = require('truffle-hdwallet-provider');

Web3 = require('web3");
nodeAddress = 'http://localhost:8545';
monitorChainAddress = '0xF8CE9D...7Bd6201a’;

mnemonic = '12 words mnemonic is here';

web3 = Web3(HDWalletProvider(mnemonic, nodeAddress, 0, 20));

mc = AccesslInterface.web3(web3, monitorChainAddress);

mc.getAllSupportedTokens(console.log);
Snippet 8 - Example of using custom web3 object

https://MonitorChain.com

The most important part of MonitorChain integration off chain integration is listening and reacting to
TokenStatusChanged events. Snippet 9 shows example of the code that listens to the token status changes.

{AccesslInterface, ERC20Interface} = require('monitorchain-interface-library');
log = console.log;
monitorChainAddress ='0xF8CE9D...37Bd6201a’;

mc = Accesslnterface(
'http://localhost:8545',
monitorChainAddress,

12 words mnemonic is here'

WS = Accesslnterface(
'ws://localhost:8543",

monitorChainAddress

callback = (err, result) => {
if(err) throw err;
tokenAddress = await mc.getTokenForEventld(result);

if ('tokenAddress) return;

log(" ${tokenAddress}: a status has been changed: ${result}");
log(await mc.getCurrentStatusDetails(tokenAddress));
token =ERC20Interface.web3(mc.w3, tokenAddress);
tokenInfo = await token.tokenInfo();
log(JSON.stringify(tokeninfo, ,4);

ws.onStatusChanged(callback);
Snippet 9 - Example of listening to MonitorChain events

In order to allow for listening to events, Web Socket provider needs to be used when initializing the
Accessinterface. The example uses two Accessinterface objects, one to access methods that check account
subscription and the second one that is subscribed to public events on Ethereum blockchain. Once event
is fired, its argument is the event Id. It is then used to retrieve the token which is associated with that event
Id. If the current address, used to access MonitorChain, is not subscribed to the token whose status has
been updated, the getTokenForEventld function call returns zero address. Otherwise it returns valid token
address which then can be used to query for the latest token status.

https://MonitorChain.com

Invoking token status changes

As mentioned earlier, integration sandbox is initialized with four token contract addresses. Token smart
contracts were implemented in such a way to contain most known bugs (like bufferoverflow exploit) and
allow sending from address to any other one. The breakable token contract can be found in the document
McnToken.sol (the path is monitorchain-developer-sandbox-tools/ethereum/contracts/McnToken.sol).

However direct interaction with the token smart contract functions is not necessary. The sandbox version
of the MonitorChain, instead of opening token smart contract code on Etherscan, (Figure 5) opens a page
called token breaker that allows user to break the token. Such transfer will be detected by the monitor and
appropriate status will be updated on the MonitorChain.

2:1.monitorchain.com

o @ ﬁ Q - background color Visual Studio

@ MONITOR Subscription
\/ —CHRAIN—

Q
Name Symbol Address Total Supply Status
BFW BFW OxD94cF3A3dF9AaA04cDECa18375d05585BCd7DD49 10000000 (]
MKS MKS Oxc6CFaAEA3183446e0E597168cD2dc296d78A5a35 E 10000000 (v]

Figure 5 - Opening token breaker page of the sandbox MonitorChain version

https://MonitorChain.com

Token breaker page allows user to execute various token exploits that were modeled by various historical
token thefts like bufferoverflow, excessive token minting etc. Each functionality on the token breaker
should be supplied with the transfer destination address (Figure 6).

onitorchain.com/tokenbreaker/0xD94cF3A3dF9AaAD4cDECa18375d05585BCd7D D498 - @ ﬁ O\ Search

Token Interface: BFW Total Supply: 10000000

Excessive transfer (Stolen Private Key)

Stealing 20% of total supply which is 2000000 BFW and sending to the address:

Excessive Transfer

Buffer Overflow

Buffer overflowing 57896044618658097711785492504343953926634992332820282019728.792003956564819968 BFW and sending to the address:
Buffer Overflow

Excessive Mint

Escessivelly minting 20% of the total supply 2000000 BFW and sending to the address:

Negative Balance

Sending 20% of the total supply (2000000 BFW) from address that does not have it to the address:

Negative Balance

Figure 6 - Token breaker page

In cases when it is not required that the token status change comes from the monitor itself due to a
detected malicious transaction on a token, user is able to set token error via admin panel. Sandbox package
is supplied with a set of mnemonic for which the account with index 0 is the sandbox admin. Admin can
access admin panel and through it change the token status (set new status or clear the status). When admin
navigates to the sandbox MonitorChain homepage (for example sandbox1.monitorchain.com), she will
have admin menu link in the top right corner of the app (Figure 7).

monitorchain.com - T} O\ Search
MONITOIR Admin
—CHRAIN—/ /
Q
Logo Name Symbol Address Total Supply Status
@ BFW BFW 0xD94cF3A3dF9AaA04cDECa18375d05585BCd7DD49 E 10000000 (v}

Figure 7 - Admin menu item

https://MonitorChain.com

After clicking on the admin menu item, user is navigated to the admin panel where she can check existing
subscribers and supported tokens. On the tokens tab, admin can review the tokens, add support for new
ones or remove exiting ones. After clicking on desired token address, it details load in the token panel
which allows admin to set or clear the error status of the token (Figure 8). Such status change also triggers
TokenStatusChanged event on the MonitorChain Smart Contract which can then be detected using the
Accessinterface library.

.monitorchain.com/admin/tokens v @ Tf? Q Search
MONITOIR
—CHRAIN—/
Subscribers Tokens

0xD94cF3A3dF?AaA04cDECa18375d05585BCd7DD4?

Total Supply: 10000000 status: ({2
MName: BFW

Symbol: BFW 1+
Decimals: 18

Blocked Addresses

Q
Logo MName Symb... Address Total Supply Status Delete
@ BFW BFW 0xD94cF3A3dF?AaA04cDECa18375d05585BCd7DD49 10000000 o *®
@ MKS MKS Oxc6CFaAEA3183446e0E597168cD2dc296d78A5a35 10000000 o x
@ PKS PKS OxATEF1490B2DcD25EATB3f2Cd6ASDa36fb621dAbS 10000000 o x
@ RST RST 0x3B9=B2Ed1f0368f48C4Ba%94959D041840De4AT3A 10000000 o x

Figure 7 - Token admin panel

https://MonitorChain.com

Resetting sandbox MonitorChain

After working for some time with MonitorChain sandbox version, user might want to reset it to start over.
In order to support that feature, MonitorChain reset script is provided on the github
https://github.com/ZenchainSoftware/monitorchain-developer-sandbox-tools. All user has to do is to call
reset.js script with appropriate admin mnemonics. The scrip will reset the token statuses on the
MonitorChain.

Additional resources

Additional resources that can be used to integration can be found on the official github account of the
ZenChain Inc. https://github.com/ZenchainSoftware . For all additional question Zenchain developers are
atyour disposal. Please don't hesitate to reach out and schedule consolations with our development team.

https://MonitorChain.com

https://github.com/ZenchainSoftware/monitorchain-developer-sandbox-tools
https://github.com/ZenchainSoftware

